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Much of the richness of the properties displayed by 
polymers in technology and biology is due to the flex- 
ibility of the long polymer chain. In the liquid state, 
a polymer not only translates but continuously changes 
its configuration due to thermal motion. If the time 
scale is long enough to average out the fast inertial 
motions ( t  >> picoseconds),l these intramolecular dy- 
namics can be described as a diffusive motion between 
different configurations or states in a complicated in- 
tramolecular potential. The long relaxation times 
correspond to the regime of long-wavelength modes of 
motion, which are strongly molecular weight dependent. 
These modes are dominated by excluded volume and 
hydrodynamic interaction effects in dilute solutions, 
and by the screened excluded volume and hydrody- 
namic interactions in semidilute nonentangled solu- 
tions.’ For these long-wavelength modes, the confor- 
mational details of the chain can be ignored and a sim- 
ple universal model can be introduced. As the time 
scale decreases, the spatial range of the motion de- 
creases and, on the nanosecond time scale, segmental 
motions are observed. These motions are almost in- 
dependent of molecular weight but are strongly de- 
pendent on the local conformational details of the 
polymer, and they retain some dependence on the ex- 
cluded volume and hydrodynamic  interaction^.^ 

If the polymer is a collection of different units, the 
conformational energy function of each unit must be 
specified together with the correlations with the 
neighboring units. As a result, a biological macromol- 
ecule built of different units, such as the amino acids 
of a protein, displays different static and dynamic local 
properties. The differences are found not only at  the 
chain ends but also at each unit, according to its specific 
structure and its neighboring interactions. On the 
contrary, a homopolymer displays different statistical 
and dynamic local properties only for a relatively small 
number of units at  the chain ends. This is the reason 
why biological macromolecules display such different 
local domains of different flexibility and mobility, 
strongly related to biological  function^.^,^ 

Segmental motions in the nanosecond time range are 
probed by dynamic scattering, NMR and dielectric 
relaxation, ESR, intramolecular excimer formation, and 
fluorescence anisotropy. Of particular importance are 
the measurements probing the orientational time au- 
tocorrelation functions of one segment vector belonging 
to the chain. This is the case of the fluorescence an- 
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isotropy decay of a chromophore naturally present on, 
or rigidly attached as a label to, the chain. Time-re- 
solved fluorescence using mode-locked picosecond 
pulsed lasers, picosecond holographic grating tech- 
niques, and frequency domain fluorometry are alter- 
natively used.6s Several synthetic polymers, such as 
polystyrene and polyisoprene, have been labeled in the 
main chain with anthracene to study segmental dy- 
namics by fluorescence an i~o t ropy .~J~  The advantage 
of this main-chain labeling with anthracene is that the 
transition dipole moment (the relaxing segment) lies 
along the backbone. Examples of naturally labeled 
polymers include polypeptides and proteins containing 
a single fluorescent group, normally a tryptophan or a 
tyrosine (as in the ACTH hormone or in azurin).6J’ 

The frequency dependence of NMR, and especially 
of 13C NMR relaxation times Tl and T2 and nuclear 
Overhauser effect, also produces useful inf~rmation.~ 
The advantage of this technique is that it does not 
require the introduction of any type of labeling, and 
therefore it applies to any polymer. However, the 
spectral density is normally tested only at  few fre- 
quencies. A large body of experimental results has been 
published resulting from both the fluorescence anisot- 
ropy7s4’15 and the 13C NMR1625 techniques. Other dy- 
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namic techniques have been proposed or may be de- 
vised to solve specific problems.26 

In any case, the crucial point for a quantitative in- 
terpretation of these relaxation experiments (and of the 
correlate technological properties or site-specific bio- 
logical functions) is the availability of reliable models 
relating the measured time correlation functions (TCFs) 
to the local structural complexity of the chain. There 
are still enormous difficulties in obtaining theoretically 
well founded procedures, although some relevant 
progress has been achieved recently. Here we review 
these advancements and discuss the resulting measur- 
able TCFs. Theoretical models for the orientational 
TCFs governed by diffusion were solved early for rods, 
spheres, and ellipsoids by DebyeZ7 and Perrin.28 Only 
in 1985 was an exact solution to these TCFs 
for flexible and semiflexible polymers, in the framework 
of an optimum approximation to the generalized dif- 
fusion equation in the full configuration ~ p a c e . ~ l * ~ ~  
Note that even the simple case of the TCFs of a 
Gaussian bead spring model was unsolved and rough 
approximations were adopted.31 When projection op- 
erator techniques and the memory function formalism3 
are used, an optimum solvable approximation, the op- 
timized Rouse-Zimm (ORZ) appro~imation,3~3~~ can be 
derived from the generalized diffusion equation for 
non-Gaussian chains. The ORZ theory strongly im- 
p r o v e ~ ~ ~ - ~ ~  the bare Rouse-Zimm Gaussian approxi- 
mation since it includes many of the conformational 
details required for the description of dynamic prop- 
erties in the range of  nanosecond^.^^ 

All the TCFs of interest in segmental relaxation ex- 
periments have been exactly derived in the ORZ dy- 
namic approximation by Perico and G ~ e n z a . ~ ~  The 
resulting ORZ local dynamics (ORZLD) are given as a 
sensitive function of the details of the intramolecular 
potential and of the specific position along the chain 
of the relaxing segment, and they are easily amenable 
to calculations. However, strong theoretical improve- 
ments are still required, especially for checking the 
approximations in the dynamic equations. Meanwhile, 
it is worth subjecting these recent theoretical advances 
in the calculations of the TCFs to critical comparison 
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with experiments, as they represent a substantial im- 
provement of the previously used39y40 TCFs. The large 
body of data on local dynamics produced both in syn- 
thetic and biological macromolecular solutions could be 
better analyzed and correlated with real parameters 
giving indications for further theoretical progress. 

The diffusion equation with constraints proposed by 
F i ~ m a n ~ l ~ ~ ~  is an improvement of the generalized 
Gaussian formalism of Bixon and Zwanzig (ORZ) de- 
vised to take into account constraints on bond lengths 
and valence angles. Relevant corrections in the mode 
TCFs relative to local motions are obtained for simple 
worm models and expected for real chains. The 
ORZLD approach to the calculation of the local TCFs 
could be extended to include some of these improve- 
ments, by changing the definition of the diffusion ma- 
trix using Fixman’s constraint matrices. 

Other approaches to segmental d y n a m i c ~ ~ ~ ~ ~ ~  based 
on Kramers theory are limited to the dynamics of the 
central segment of a perfectly flexible chain in free 
draining conditions and to the calculation of the no- 
nobservable conformational TCF. This TCF, with the 
form of an exponential times a zero order modified 
Bessel function,39 has been largely used in the inter- 
pretation of segmental relaxation data.1° The as- 
sumption was made that it is representative of all the 
measured TCFs and that conformational details affect 
only the time constants of the function. we 
have shown that the ORZLD theory gives an equivalent 
function for the ideal chain in the same conditions re- 
ported above. This equivalence is really not surprising 
when we think that the diffusion Smoluchowski equa- 
tion must be equivalent to Kramers rate theory in the 
overdamped regime, if the same intramolecular poten- 
tial is used.43 However, ORZLD theory gives strongly 
different functions for different observable TCFs and 
different local details. 

Note that one of the main differences between the 
orientational TCFs of a Gaussian chain and the TCFs 
of a “real” chain in the ORZLD approximation lies in 
the fact that the latter approach can take into account 
accurate details of the intramolecular potential in- 
cluding some influence of the height of the barriers. 
Dynamic properties of semiflexible c h a i n ~ ~ ~ p ~ ~  and of 
models in the rotational isomeric state approximation 
with independent or interdependent rotations (the 
RIS-ORZ hierarchy) have been ~ b t a i n e d . ~ ~ ~ ~ ~  Recently 
an extension to biological macromolecules was given, 
including polypeptides of known intramolecular energy 
map of each residue, and multiple domain chains.48 

Alternatively, molecular dynamic simulations de- 
veloped in the picosecond region5 can be extended to- 
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ward the nanosecond domain. However, this requires 
computing times of the order of many hours in a mod- 
ern supercomputer, and even the simplified Brownian 
dynamics techniques are still quite time consuming. In 
addition, an understanding of the main parameters of 
the underlying processes is better achieved by retaining 
the typical reductionist approach of the physical sci- 
ences through a modelization. 

The ORZ Local Dynamics 
The linear macromolecular chain is modeled as a 

collection of n beads (monomer or effective monomer 
units) of coordinates Ri and frictional coefficients Cj, 
connected by a potential of mean force V((Ri)) and 
fluctuating due to Brownian motion. The bonds con- 
necting neighboring beads are assumed to have root 
mean square length li. For the sake of simplicity, we 
assume here that all the li and li are identical with land 
1. The intramolecular potential V((Ri}) can take into 
account the structural properties of each unit in the 
chain together with their short-range correlations, in- 
cluding the form of the potential and the heights of the 
barriers. Excluded volume interactions can be included 
by using suitable  approximation^^^^^ supported by ex- 
act renormalization group calculations,4s but here these 
are discarded in favor of simpler 6' conditions. 

With each bond vector li 
1; = Ri - Ri-1 i = 1, ..., n - 1 (1) 

in position i along the chain, we associate the TCFs of 
experimental interest related to the first and second 
Legendre polynomials: 

Pl'(t) = (cos 6"(t)) = ( [ l ~ ~ t ~ ~ l ~ ~ o ~ ] / l ~ ~ t ) l ~ ~ o ~ ~  (2) 

3/2( [li(t)'li(o)12/li2(t)li2(0)) - 7 2  (3) 
Pz'(t) = ( y 2  cos2 6'i(t) - 7 2 )  = 

with @(t) the angle the bond vector li rotates in time 
t .  

These TCFs are related to dielectric relaxation, 
fluorescence anisotropy, and NMR relaxation times by 

r i ( t ) / r i  = Pj ( t )  (5) 

(6) 

with t the dielectric constant, ri(t) the fluorescence 
anisotropy, and Ji(w) the NMR spectral density. In 
addition, we define the fundamental TCF of the vector 
1i: 

(7) 

The dynamic equation required to calculate these TCFs 
was chosenz9 to be the ORZ approximation to the gen- 
eralized diffusion equation in the full configuration 
space of the polymer. This approximation amounts to 
the Langevin e q u a t i o r ~ ~ ~ ~ ~ ~ , ~ ~  

Ji(w) = Re L m P z i ( t )  exp(-id) dt  

M,'(t) = (li(t)*li(O) ) /  ( l i 2 )  

n-1 
-R;(t)  + oC(HA)ijRj(t) = v*i(t) 
at j = O  

(8) 

describing the time evolution of the bead coordinates 
under random forces, responsible for the Gaussian 

a 

random velocity v*i(t), the intramolecular potential 
V({Ri)), friction forces, and hydrodynamic interactions 
(describing interaction between friction forces and flow). 
The matrix A of order n is given in terms of the inverse 
U of the static bond correlation matrix 

uij-1 = (li.lj)/P (9) 
as 

A = M T ( O  0 0  u ) M  

with the matrix M of order n given as 

I =  (;n :'" ; :) 
-1 1 0 

The matrix H is the hydrodynamic interaction matrix 
averaged over the polymer configurations 

(12) 

5; = r /6vol  (13) 
the hydrodynamic interaction strength, with vo the 
solvent viscosity. In a 6' solution, 5; has been estimated 
theoretically and experimentally to have the value 
0.25.45*49 The constant 

CT = 3k,T/l2{ (14) 

is the typical bond rate constant of the model. A rough 
estimate of u is given using eq 13, with the value 0.25, 
to obtain 

~ ~ B T / T v o ~ ~  (15) 

This value is expected to be an upper bound to the 
jump rate of a bond, while in a quantitative comparison 
with experiments, o should be allowed to change as a 
smooth parameter in order to compensate for the ap- 
proximations in the ORZ approach. The bond vector 
static correlation matrix and mean inverse distances 
( l/Rij) are better computed exactly by using the full 
intramolecular potential V({Ri}): 

( li4j)/12 = N l d { R i )  e~p[-V((R,))/k~T](l~.l~)/1~ (16) 

Hij = 6ij + fr(l/Rij)(l - 6ij) 

with 

(l/Rij) = N l d { R i )  eXP[-V((Ri))/kB~(l/Rij) (17) 

with 

N-' = SdlRi )  exp[-V({R8/kB?7 (18) 

or via the Gaussian approximation 

( l /Ri j )  = ( 6 / ~ ) ~ . ~ ( R i ? ) - " ' ~  (19) 

In approximation 19, all the conformational infor- 
mation enters into the ORZ dynamics via U-I. We note 
from eq 16 that the ORZ dynamics include some in- 
formation on the form and barrier heights if we choose 
a detailed intramolecular energy map. It is worth re- 
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calling that in the ORZ approximation some informa- 
tion on the conformational energy (affecting moments 
higher than the second) and some contributions to the 
diffusion tensor are lost with the discarded memory or 
by ignoring local constraints, Both these effects may 
have appreciable influence on the local dynamic scale. 
Much more theoretical work in this direction is re- 
quired. 

In spite of the ignored contributions, the ORZ ap- 
proximation strongly improves the Rouse-Zimm 
Gaussian approximation. This allows for a first account 
not only of long-wavelength relaxation modes on a 
spatial scale greater than a Kuhn effective segment but 
also of short-wavelength modes, characterizing coop- 
erative local motions on a scale greater than the bond 
length in the nanosecond time domain. The validity 
of this account will be checked by experiments and by 
improvement of the basic theoretical approach. 

In 0 solutions, the concentration effects to first order 
may be included by using the discrete full dynamic 
multiple scattering approach (DDMS theory), which 
maintains its validity for all the hierarchy of dynamic 
ORZ models.50 Higher order effects can be approxi- 
mately included by introducing the concept of screening 
of the hydrodynamic interaction, while concentrated 
solutions in good solvents require major efforts to in- 
clude the tube model description? 

A local persistence length relative to the bond i as the 
mean projection of the bond vector i on the end-to-end 
vector distance of the chain was introduced as follows:41 

This length describes the number of bonds statistically 
aligned with bond i. This definition takes into account 
interactions both with preceding and following bonds 
because the bond position may be strongly asymmetric. 
The persistence length P,' is sensitive to the chemical 
composition of the chain and, for a short or very stiff 
finite chain, to the length of the chain. With definition 
21, the characteristic ratio for the finite chain C, turns 
out to be the average of the bond persistence lengths: 

(22) 

Solving eq 8 by transformation to normal Coordinates 
{ea), we get29 for the fundamental TCF Mli( t ) :  

n-1 

i = l  
PJ1 = (72 - 1)-1 CP,i = c, 

n-1 

a = l  
Mli(7) = C (Qia - Qi-1,a)2pa-1 exp(-A,T) (23) 

with 
7 = at (24) 

the normalized time in u-l units. The quantities Q and 
(A,) are the matrix of eigenvectors and the eigenvalues 
of the product matrix HA, while pL1 is proportional to 
the mean square length of the normal mode ta: 

(E2) = Z2/la-' (25) 
Note that Q, {Aa), and { p a )  characterize each model of 
the ORZ hierarchy, and in the simple Gaussian ap- 
proximation for the ( l /R i j ) ,  eq 17, these parameters are 

(50) Perico, A,; La Ferla, R.; Freed, K. F. J.  Chem. Phys. 1987, 86, 
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Figure 1. The first- and second-order TCFs, and P&) (-) 
and the segment vector autocorrelation function MI (-4 together 
with M: (e-) and M13 (---) versus M1. From ref 29. 

only a function of the static bond correlation matrix U-l. 
For the first- and second-order TCFs, the following 

results were obtained exactly29 in the ORZ approxi- 
mation (eq 8) to the generalized diffusion equation: 

Pli(t) = (1 - x2)[1 - (2/7r) arctan x ]  + (2/7~)x (26) 

P i ( t )  = 1 - 3 ( x 2  - x3(r/2)[ l  - (2/7r) arctan x ] )  (27) 

where 

x = [l - (M1'(t))2]0.5/M1'(t) (28) 

Equations 25-27 show that in the ORZ approximation 
Pli( t )  and P i ( t )  are universal functions of the i bond 
vector TCF, Mli( t ) .  

The static bond correlation matrix U-' has a central 
role in the ORZLD theory because all the conforma- 
tional details enter into the theory via this matrix. Note 
that if the segmental relaxation is described by Pli or 
P i ,  the effects of the position of the bond along the 
chain and of the polymer structure enter only via Mli, 
eq 23, through A,, pa,  and (Qia - Qi-l,a)2. 

Main Results of the ORZLD Theory 
In Figure 1 the universal plot of Pli(t) and P$(t)  

against M,'(t) is presented.29 The plot is valid for any 
ORZ model and for any bond i in the chain. In the 
same plot, M,'(t), (Mj( t ) )2 ,  and (Mt( t ) )3  are shown. The 
figure clearly shows that the first-order TCF P1 is dif- 
ferent from the bond vector TCF M1 over the entire 
time range. The TCF P2 is shown to be strongly dif- 
ferent from M12 and rather different from M13, the 
characteristic second-order TCF for a sphere or a rod. 
We note that this general conclusion is in striking 
contradiction with the simple assumptions, often re- 
ported in literature, according to which Pl is approxi- 
mated by Ml and P2 by M12 and with the models based 
on tetrahedral lattices, according to which Pl = P2. 

In the simplest model in the ORZ hierarchy, the 
Gaussian bead spring model, we analytically know the 
quantities Q, {Aa}, and { p a }  exactly in the free draining 
Rouse limit and within an accurate approximation in 
the nondraining Zimm limit. These analytical quan- 
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Figure 2. The correlation time in/' for the TCF P2"/'(t): iPS 
(-), PE (-.-), iPP (--), and PDMS (--e). From ref 38. 

tities allowed us to obtain exact expressions of M1 for 
the central and end bonds:38 

Mln12(r) = exp(-2r)I0(2r) (29) 

M11(7) = e x p ( - 2 ~ ) 1 ~ ( 2 ~ ) / ~  (30) 

in the free draining case and 

in the nondraining case. Here I,(x) is the modified 
Bessel function of order m, and r(a,x) the incomplete 
y function. Note that eq 31 and 32 simplify to the first 
term for large IZ and T not too large. A comparison of 
eq 29 and 32 shows quite clearly the difference in the 
relaxing behavior of bonds in a central or an end pos- 
ition as well as a strong draining effect. The latter effect 
is indicative of a concentration dependence because, in 
passing from diluted to concentrated, nonentangled 
solutions, the hydrodynamic interactions become 
screened. Theory predicts by simple small T and as- 
ymptotic expansions of eq 29 and 32 that in the 
short-time behavior there are no draining and position 
effects, while these effects become strong in the long- 
time behavior.38 It is interesting to note that eq 29 is 
c o i n ~ i d e n t ~ ~  with the main result derived by Helfand 
and c o - ~ o r k e r 6 ~ ~ , ~ ~  for a conformational transition 
model in a Kramers-type approach, if their conforma- 
tional TCF, C(T) ,  is identified with the present bond 
vector TCF, Ml. Helfand's zero order modified Bessel 
function behavior describes simply the connectivity for 
a relaxing central segment in a Gaussian chain in the 
free draining limit. Therefore, the success of this 
function in the interpretation of a large body of ex- 
perimental results obtained by fluorescence anisotropy 
and NMR appears to be not at all unjustified. However, 
it also clearly appears that each specific experiment 
must be interpreted with the right TCF, PI or P2, and 
that each sample requires the introduction of its proper 

n = 1001 

4 -  

3 -  

- 1  I 
1 2 

Figure 3. The correlation time in/' for the TCF P2"/2(t)  vs the 
numerical persistence length PI1 = (1 - g)-' for n = 10, 20, 50, 
100: rod limits (arrows); J; = 0 (-); {, = 0.25 (--I. From ref 30. 
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Figure 4. The bond correlation times t' (for P&)) (--) and local 
persistence lengths PL/l (--) as a function of the bond index i 
for poly-L-alanine, n = 50. From: Perico, A. Biopolymers, to be 
published. 

conformational details, included in V((R&, avoiding the 
oversimplifications of the simple Gaussian chain model. 
In the latter case, the relaxation depends only on one 
parameter included in u, say the effective bond length 
1. However; in the real case, the relaxation depends on 
all the parameters characterizing the intramolecular 
potential V((R# (see eq 16) that include the specific 
rotational potential due to each unit (including the 
barrier height!) and its neighboring correlations. Some 
ORZLD results are discussed in the following for dif- 
ferent polymer models: RIS models (including inter- 
dependence of dihedral rotations but ignoring barrier 
heights), semiflexible chains as described by a freely 
rotating chain in the ORZ approximation, polypeptide 
models calculated by using detailed energy maps for 
each residue and multiple domain chain models. 

in Figure 2 the P2 
correlation times for a central segment, 

As a first example, we 

= & m P 2 n / 2 ( ~ )  d r  (33) 

for rotational isomeric state models of polyethylene 
(PE), isotactic polystyrene ( ips) ,  isotactic poly- 
propylene (iPP), and poly(dimethylsi1oxane) (PDMS) 
at 400 K.37 While the end bond is almost independent 
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Figure 5. The bond correlation times 7' as a function of the bond 
index i, n = 5 0  poly-L-prolyne I1 (-), poly-L-alanine (--), and 
polyglycine (-a-). From: Perico, A. Biopolymers, to be published. 

of the number of virtual bonds for n > 5,  the central 
bond displays a noteworthy increase of the correlation 
time PI2 with n toward an asymptotic limit almost 1 
order of magnitude higher than d .  In addition, the 
larger the polymer local stiffness, the larger the ob- 
served increase: approximately 100 virtual bonds for 
ips, but only 30 virtual bonds for the more flexible 
PDMS, are required to get molecular weight inde- 
pendent correlation times. This shows how large the 
cooperativity and sensitivity to local conformational 
details are in the ORZLD approach, even for flexible 
polymers. 

For a semiflexible polymer mode130 we choose the 
freely rotating chain in the ORZ approximation with 
stiffness parameter g = -cos 6, with 6 the valence angle, 
and numerical persistence length PI1 = (1 - g)-l. Figure 
3 showsm the correlation time (eq 33) for a central bond 
as a function of the numerical persistence length (1 - 
g)-I. For g = 0, the ORZ model for the freely rotating 
chain gives the Gaussian chain behavior, and the cor- 
relation time for P2 becomes molecular weight inde- 
pendent. As g increases, the correlation time increases 
strongly to approximate in the g - 1 limit the rod 
behavior, represented in the figures by the arrows. Note 
that, even in the rod limit, the ORZ local dynamics are 
accurate. 

Using Flory's (T) matrices calculated from the single 
amino acid energy map including interdependence of 
(O,+l angles and the approximation of independent 
successive residues, the correlation times and local 
persistence lengths were calculated. The results are 
presented in Figures 4 and 5 for poly-L-alanine, poly- 
glycine, and poly-L-prolyne I1 as a function of the 
position of the amino acid along the chain.44 Local 
persistence length (hereafter normalized to the segment 
length I )  and local dynamics appear strongly correlated, 
and the curves, typical for homopolymers, are bell 
shaped with a maximum value in the middle and with 
the absence of any particular domain of flexibility. 
However, if the polymer is built with different amino 
acid units, some domains of different local flexibility 
and dynamics can appear.44 One of the simpler models 
for these chains is a freely rotating chain with different 
g values at different bonds. The plot in Figure 6 is 
relative44 to a multiple domain chain model, charac- 
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Figure 6. ,The bond correlation times f (-) and local persistence 
lengths P,,'/l(---) for a multiple domain chain in the ORZ freely 
rotating chain model; n = 50. From: Perico, A. Biopolymers,  to 
be published. 

terized by five blocks of different g values. Note the 
emergence of five distinct static and dynamic domains, 
characterized by domain persistence lengths around 1.5, 
3.9, 1.9,5.0, and 2.3, while the mean persistence length 
is 3.12. The dynamic domains are strongly correlated 
with the stiffness domains and are even more pro- 
nounced. 

Concluding Remarks 
These concepts have been applied to the interpreta- 

tion of the fluorescence anisotropy decay from single 
tryptophan-containing polypeptide hormones, ACTH 
and glucagon, and a series of their fragments? As a first 
rough approach, an ORZ freely rotating chain model 
was used. The data were interpreted in terms of the 
effect of the position of the tryptophan along the chain, 
of the chain length, and of the mean persistence length. 
The comparisons give a reasonable value of the mean 
persistence length of the polypeptides, around 7-10 
residues, and meaningful position effects. An inter- 
pretation of the polypeptide dynamics in terms of local 
persistence lengths and local dynamics using more ac- 
curate V({&,J) potentials, calculated from peptide energy 
maps, is in progress. We anticipate that the emerging 
dynamics will be of the type shown in Figure 6. We 
hope that these studies will contribute insight into the 
role of local dynamics in the biological function of 
biomacromolecules. 

The main goal of this paper is to summarize in a 
simple way the results of the ORZLD theory of seg- 
mental relaxation indicating their role in a first attempt 
to quantitative interpretation of segmental relaxation 
experiments on biological and synthetic macromolecules 
in terms of local conformational details. A simple magic 
universal function does not exist to interpret all the 
local dynamic features of all the synthetic and biological 
macromolecules in all conditions. Fortunately, the 
present level of the theory is still simple enough to be 
amenable to calculations to be checked by extensive 
dynamic experiments on polymer solutions. 

Work is in progress to take into account, at the same 
theoretical level, the motion of lateral chains and of 
branched polymers: this step is useful in the inter- 
pretation of fluorescence anisotropy and NMR exper- 
iments. 
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In any case, care should be taken in the comparison 
with experiments, since the basic dynamic approach in 
the nanosecond time domain is still insufficient. In fact, 
the actual level of the theory (ORZLD) can be im- 
proved, by taking into account local constraints and the 
memory term that were discarded in the ORZ approx- 
imation to the generalized diffusion equation. Finally, 

more work is expected in order to clarify further the 
relationship between the present diffusion approach 
and Kramers rate theory approach. 
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